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Much work is reported in the literature about the sorp- 
tion of organic vapours in polymer films. In typical sorption 
experiments the mass gained by a sample held in the vapour 
alanosphere at constant temperature and pressure is followed 
with time. In many situations these curves are initially linear. 
Under these circumstances the diffusion coefficient is rela- 
ted to the mass gain by the following equation 

Mt/M.. = (2/zrl/2XDt/12)l/2 (1) 

where the thickness of the sheet is 2/. If  the diffusion co- 
efficient is an increasing function of concentration, linearity 
continues until a higher value of Mt/M® is achieved. It is 
common practice to use the initial slopes of these curves to 
obtain the value of the diffusion coefficient and its variation 
with the concentration of the diffusing substance. 

The solution to the diffusion equation 

ac/at  = D(a2C/a X 2) 

for a case where sorption is taking place on a thin sheet of 
thickness 2l, with constant concentration on the surfaces 
and constant D, leads to the following relationship 1: 

Y = (8/?r 2) [exp(-[3t) + (1/9)exp(-9[3t) 

+ (1/2S)exp(-[3t) + . . . ]  (2) 

where 

[3 =Drr2/4l 2, Y = (1 - Mt/M,, ) 

and the nth term in the series is given by 

exp(--(2n -- I) 2 [3t)/(2n - l)  2 

At large values of time the difference between the sum of 
the entire series and the first term becomes insignificant, so 
that a plot of In(Y) vs t shows a straight line. It should be 
possible to compute the diffusion coefficient from the limi- 
ting slope - [3, of these plots. When this procedure is fol- 
lowed for systems known to have concentration dependent 
D, it is noticed that the plots show a clear break at a certain 
stage of sorption and the slope abruptly changes. Several 
systems reported in literature have been examined and found 
to exhibit this behaviour. A typical example is the sorption 
of benzene on PBMA reported by Machin and Rogers 2. The 
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data are plotted in Figure 1. The original sorption curve has 
Fickian characteristics. Similar breaks on the In(Y) vs t 
plots have been observed in the sorption of benzene in poly- 
isobutylene 3 and acetone in PVAc 4. 

A more interesting fact is that when In(Y) vs t plots are 
constructed from sorption data of 'non-Fickian' systems, a 
similar break is observed in several cases. A good example 
of this is the sorption of acetone in cellulose acetate reported 
by Bagley and Long s. The plot is shown in Figure 2. Similar 
behaviour has been found in the sorption of methyl iodide 
in cellulose acetate 6 and methylene chloride in polystyrene 7. 

For systems where the diffusion coefficient continuously 
varies with concentration, the slope of these semilog plots 
should not be constant with the progress of the sorption/ 
desorption process. On this basis Chernova and Vasenin 8 
suggested a method for the determination of the D - c  rela- 
tionship from single desorption curves. In the cases cited 
above, however, the slope is constant with the progress of 
sorption until an appreciable quantity of the penetrant is 
sorbed. This feature, along with the appearance of the 
break in the semilog plots, seems to be characteristic of 
systems where the diffusion coefficient is very low at low 
concentrations, increases sharply beyond a certain concen- 

I.O 

~-Ol 

SO IOO 150 2 0 0  250 3 0 0  350 
t (rain) 

Sorption of  benzene in PBMA, 23°C. Data: Machin and 

o o l  o 

Figure 1 
Rogers 2 



I.O, 

O5 

o 

o o 

I I I 
25 5 0  75  IOO 125 150 175 

t (rain) 

Figure 2 Sorption of  acetone in cellulose acetate at 30°C, thickness 
= 4.0 x 10 -3 cm. Pi = 0 rnm, p f  = 120 ram, Data: Bagley and Long s 
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tration to a much higher value. A limiting case will be one 
of  a discontinuous diffusion coefficient which has been dis- 
cussed by Crank ~. The calculated concentration distance 
curves of these systems suggest that diffusion will take 
place with two 'advancing fronts'  or moving boundaries in 
the sheet. These moving boundaries will eventually meet at 
a certain stage ofsorpt ion and soon after this event, sorption 
will be governed by a high value of  the diffusion coefficient 
because the low concentration region in the sheet will 
quickly disappear. If the actual process is nearer this 
model, the effect of  this event should be reflected on the 
sorption plots. The following analysis summarized from 
Crank ~ applies to this model and will be used to demonstrate 
the significance of the break mentioned above. 

Consider a sheet extending in thickness between x = 0 
and x = 21. Let one of the advancing fronts be at a distance 
X from the sheet surface (x = 0) at time t and let the con- 
centration in the region 0 < x < X be represented by C. C 
is then a function o f x  and t. Also if the diffusion coefficient 
rises from zero to D at C = CX, then 

C = Cx at x = X ( 3 )  

ac/at  = D(a2C/a x 2) in the region 0 < x < X (4) 

C=Co a t x = O a t t ~ > O  (5) 

Before the advancing fronts meet at t = t O the medium is ef- 
fectively semi-infinite and the solution of (4) satisfying (5) 
is 

C = CO +Aerf[x/2(Dt) 1/2] (6) 

where A is a constant. 
Since the equation must be satisfied for all values of  t, it 

follows that X must be proportional to t 1/2, i.e. 

X = kt 1/2 (7) 

where k is a constant. 
Substituting (7) in (6) with the condition (3) we obtain, 

Cx/C 0 = (A/Co)erf(k/2D 1/2) + 1 (8) 

It can be further shown ~ that the quantities Cx/Co and 
k/2D 1/2 are related by the equation 

Cx/C 0 = 1/(1 + 7r 1/2Q(expQ2)erf Q) (9) 
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where Q = k/2D 1/2. 
From equations (8) and (9) it is apparent that there is 

only one independent variable between the three quantities 
Cx/Co, A/Co and k/2D 1/2. For a chosen value of k/2D 1/2 
therefore, the parameters Cx/Co and A/Co can be calculated. 

The extent of  sorption through a unit area of the half 
sheet (Mt) is easily obtained from the flux at x -- 0. Diffe- 
rentiating equation (6) we get 

3 Mt/at = -D(a C/ax)x = 0 = - A  (D/Tr t) 1 / 2 

which on integration leads to 

M t = -2A(Dt/Tr) l/2 

At infinite time when the sheet has attained equilibrium and 
the concentration everywhere is C 0, Moo = IC O. Thus 

Mt/Mo~ = (-2A/Corrl/2)(Dt/12)l/2 (10) 

For sorption, the constant A/C 0 should have a negative 
value. The initial sorption plot will be linear if Mt/M= is 
plotted against t 1/2. 

The slope on a plot ofMt/Mo~ vs (Dtfl2) 1/2 should be 
-2A0r l /2c0 ) ,  constant till the advancing fronts meet. The 
later sorption period for which equation (10) is not valid, 
has been shown to follow the following equation ~ 

o o  

Mt/M,o = 1 + 2 

n = 0  

e x p [ - D ( 2 n  + 1)2n2(t - to)/4l 2] x 

(2(-1)n/(2n + 1)70 x 

1 

f (f(x)/Co)sin((2n 

0 

+ 1)Trx/21)d(x/l) - 4 / ( 2 n  + 1)2rr 2 } 

(11) 

where 

f (x) /C 0 = 1 + (A/Co)erf[(x/l)/2(Dtofl2) 1/2] (12) 

and from (7) 

(Dtofl 2) 1/2 = D 1/2/k (13) 

Forplot t ing the theoretical sorption curve a value for 
k/2D 1/2 is chosen and the quantity A/Co is determined 
from equations (9) and (8) and finally the sorption curve is 
constructed using the equations (10) and (11). The integral 
in (11) is easily evaluated numerically with the help of  (12) 
once k/2D 1/2 is chosen and A/Co is calculated. 

Following this procedure starting with k/2D 1/2 = 0.4, 
sorption points have been plotted on a semilog graph paper 
in Figure 3 and in the usual form in Figure 4. 

A break in the curve is clearly visible in Figure 3 although 
Figure 4 appears 'normal ' .  The similarity between the cal- 
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culated curve and the e_xperimental one of Machin and 
Rogers is clearly visible. Similar calculations have been made 
by the author with k/2D 1/2 taken as 0.3, 0.48 and 0.61 and 
in each case the break is seen. The extent of departure of 
the slope should clearly depend on -A/C 0 which increases 
with increasing value of k/2D 1/2 eventually approaching 
unity when the system will behave strictly in accordance 
with equation 1. The calculated value of Cx/Co approaches 
zero under these conditions. 

Although these results have been obtained from a model 
which assumes the limiting case of discontinuous diffusion 
coefficients which may not be fully describing a real case, 
the similarity between the theoretical and the experimental 
curves indicates that it very nearly represents the actual pro- 
cess. It follows that in a markedly concentration-dependent 
system there will be a rapid change in the gradient but not 
a discontinuous change from one straight line to another, 
when ln(1 -Mt/M** ) is plotted as a function of time. This 
is because in such a system a sharp 'moving front' wiU not 
exist. The 'front' will be somewhat diffused depending on 
the extent of concentration dependence. The rate of sorp- 
tion which depends on -D(0 C/ax) at the outer surfaces of 
the sheet will take some time to react to the change occur- 
ring at the sheet centre. 

We shall now examine the significance of this model as 
far as the value of D as determined from experiments is con- 
cerned. In common practice the value of D is calculated 
from the initial slope using equation (1). Comparing equa- 

Table I 

Data Source System Ds/D 

1 Machin and Ro~/~ers 2 PBMA-Benzene, 23°C 0.38 
2 Hayes and Park a. Polyisobutylene-Benzene, 25°C 0.45 
3 Kokes et al 4 PVAc-Acatone 20°C 0.55 

D s is the value calculated from equation 1 
D is the value calculated from later slopes (after the break) on the 
In(Y) vs tp lo t  
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Figure 3 Calculated sorption behaviour with 'advancing fronts' 
k/2D 1/2 = 0.4 --O-- points calculated from equation (10); - -D-  
points calculated from equation (11 ) 
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tion (1) with equation (10) it is clear that this value, will 
always be off by the factor (A/Co) 2, compared to the dif- 
fusion coefficient corresponding to the highest concentration 
involved in the experiment. Thus, for the case analysed, 
with k/2D 1/2 = 0.4,A/Co comes out to be -0.61. The dif- 
fusion coefficient calculated from equation (1) will be 0.37 
times the real one in this case. Table I gives the ratio of 
diffusion coefficients calculated from the slope after the 
break and equation (1), using data from three different 
authors. 

The procedure for calculation of D based on equation 
(11) has a direct theoretical justification compared to use 
of equation (I) the basis for which is constant D through- 
out the concentration range. In equation (11) the summa- 
tion term involves (2n + 1) 2 in the negative power of the 
exponential. The influence of terms for n > 0 will therefore 
be negligible. Thus if terms other than n = 0 are dropped, 
we have 

(I - Mt/M~. ) = -2Zexp  [-DTr2(t - to)/4l 2] 

where Z equals the quantity in curly brackets of equation 
(11). Calculations show that it is a negative quantity. 

Taking logarithms and writing all constants collectively 
as In K we get 

ln(1 - Mt/M..) =lnK - (D~r2/412)t (14) 

The slope after the break will therefore be -Dzr2[412 from 
which D can easily be calculated. 

Some authors 2'9'1°'11 have in the past used the long time 
sorption data close to equilibrium for the calculation of  D. 
The 'advancing front' model offers a rigorous justification 
for the same procedure. However it necessitates the use of 
factor (A/Co) 2 if equation (1) is used for the calculation of 
D corresponding to highest concentration involved. 

The phenomenon of break in sorption curves is to a 
great extent explained by the 'advancing fronts' model, 
which warrants further investigation. 
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INTRODUCTION 

Studies on the drag reduction phenomenon in polymeric 
solutions indicate the existence of  a threshold level of shear 
stress which must be exceeded before the drag reduction 
manifests itself. This effect is known as the onset of  drag 
reduction and is influenced by both 'flow' and 'polymeric'  
parameters. White l, and Vleggaar, Dammers and Tels 2 found 
analytically that the Reynolds number corresponding to 
the inception of  drag reduction is proportional to the pipe 
diameter raised to the power of  8/7. However, the results 
of  these studies do not explain all the experimental results 
obtained with different polymers a,4. 

In the present note, the model due to Denn has been 
adapted to represent the viscoelastic properties o f  the drag- 
reducing fluid. Results obtained indicate that the onset 
Reynolds number is a function of  the pipe diameter, the 
type of  polymer and its concentration, as well as the velo- 
city gradient near the wall. Experimental results available 
in the literature have been explained qualitatively using the 
present analysis. Further, it is shown that the result obtained 
by Vleggaar et aL 2 forms a particular case of  the present 
study. 

Further,/a,r and s are material constants. 
For one dimensional flow, equation (1) reduces to 

1 + r (lI /2)(s-2)l  2 [ o(t) 
d ] d 

dt  j = / ~ -  7(t) (2) 

where ~(I1/2) (s 2)/2 represents the relaxation time of  the 
fluid related to the exponentail stress deca~¢ at a constant 
strain. II for established flow is 4(dVz/dy)  z, where Vz is the 
bulk flow velocity in z-direction. For periodic strain of  the 
type 

7 = 70exp(i cot ) 

the stationary solution of  equation (2) is 

la [ iwr(II/2) (s-2)/2 ] 
o(t) = r (1 /2I )  112(s-2) [ 1 ] x 

exp(iwt)  (3) 

for t ~ r( l I /2)  (s-  2)/2 
Introducing the complex relation modulus 

ANALYSIS 

A drag-reducing fluid is considered as a viscoelastic one 
possessing the Newtonian viscosity. Such a fluid fits the 
Denn model s, represented by the following rheological 
equation: 

6ri! 
r i! +r (I1/2) (s-2)/2 - -  = 2/ae ~7 (1) 

6t 

where r zl, et/are the components of  the deviatoric stress 
tensor and the rate of strain tensor, respectively. 6/6 t rep- 
resents the convected derivative and I is an invariant of e ii. 

* Present address: Chemical Engineering Department, The Ohio 
State University, 140 West 19th Avenue, Columbus, Ohio 43210, USA. 

G *(co) = G'(co) + iG"(co) = o(t)/7(t) 

one obtains 

O'(6o) = G [ c°2r2( l l /2) (s-2)  ] 

1;7 --2)j 

a % 0 )  = a 
1 + o j2r2( l l /2 )  (s- 2) 

G'(co)/G"(o~) = o~r( l l I2)(  s- 2)12 

where 

G = (p/r) (II/2) (2-s)/2 

(4) 
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